Studies on sulfinatodehalogenation. XXIX. The sulfinatodehalogenation of primary polyfluoroalkyl iodides and bromides by sodium disulfite

Wu Fan-Hong and Huang Bing-Nan*

Shanghai Institute of Organic Chemistv, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032 (China)

(Received March 12, 1993; accepted June 9, 1993)

Abstract

Using DMF, acetonitrile and alcohols as cosolvents, both polyfluoroalkyl iodides, such as Cl(CF₂)_nI (n=4, 6, 8; 1a-c) and F(CF₂)_nI (n = 6, 8; 1d, e), and polyfluoroalkyl bromides, such as Cl(CF₂)₆Br (3b) and F(CF₂)₈Br (3e), react with sodium disulfite in neutral aqueous solution to give the corresponding sulfinates $Cl(CF_2)_nSO_2Na$ $(n=4,$ 6, 8; 2a–c) and $F(\overline{CF_2})$, SO₂Na (n=6, 8; 2d, e) in good yield. In a similar manner, CF₃CCl₃ (4a) reacted with sodium disulfite to give $CF₃CCl₂SO₂Na$ (5a).

Introduction

Since we discovered the first sulfinatodehalogenation reaction using sodium sulfite in aqueous dioxan solution [l], several new sulfinatodehalogenation reagents have been found such as dithionite [2], thiourea dioxide [3] and Rongalite [4]. To study the reaction and expand the range of reaction reagents, we have continued searching for new sulfinatodehalogenation reagents.

Sodium disulfite is a weak reductant, usually used in redox catalyst systems with persulfate for polymerization [5]. In the presence of an initiator, sodium disulfite can add to $C=C$ bonds [6]. It was also been reported that sodium disulfite can react with propargyl chloride to give propargyl sulfonate [7]. Here we wish to report a new application of sodium disulfite in sulfinatodehalogenation reactions.

In neutral aqueous dimethylformamide (DMF) solution, sodium disulfite reacted with polyfluoroalkyl iodides **(la-e)** to form the corresponding polyfluoroalkanesullinates **(2a-e).**

$$
R_{\rm F}I \xrightarrow{\text{ sodium disulfite}} R_{\rm F}SO_2Na
$$

(1) (2)

 $[(a)$ $R_F = Cl(CF_2)_4$; (b) $R_F = Cl(CF_2)_6$; (c) $R_F = Cl(CF_2)_8$; (d) $R_F = F(CF_2)_6$; (e) $R_F = F(CF_2)_8$

Although the C-Br bond is much stronger than the C=I bond, polyfluoroalkyl bromides also react with sodium disulfite in a similar manner if an extended reaction time is employed.

$$
\begin{array}{ccc}\nR_{\rm F}Br & \xrightarrow{\text{ sodium disulfite}} & R_{\rm F}SO_2Na \\
(3b, 3e) & (2b, 2e)\n\end{array}
$$

The optimal reaction temperature range was 70-80 "C. Alcohols and acetonitrile could be used as cosolvents, but the ratio of the solvents had a considerable effect upon the reaction. When the volume ratio of water to alcohols or acetonitrile was less than l:l, the sulfinatodehalogenation reaction of sodium disulfite proceeded well. Under other circumstances, the polyfluoroalkyl halides were recovered. Further results are listed in Table 1.

 $CF₃CCl₃$ reacted with sodium disulfite to give 1,1dichlorotrifluoromethane sulfinate, but the yield was low.

$$
\begin{array}{ccc}\n\text{CF}_{3}\text{CCl}_{3} & \xrightarrow{\text{sodium disulfite}} & \text{CF}_{3}\text{CCl}_{2}\text{SO}_{2}\text{Na} \\
\text{(4a)} & & \text{(5a)}\n\end{array}
$$

We suggest that the sodium disulfite forms the anion radicals of SO_2 and/or SO_3 and that the reaction is initiated by these anion radicals and proceeds through a single-electron-transfer process. Polar solvents, such as DMF, CH₃CN and alcohols, may favor homolysis of the S-S bond.

Experimental

Temperatures were uncorrected. IR spectra were recorded on Perkin-Elmer 983 and IR-440 spectro-

^{*}Author to whom correspondence should be addressed.

Entry No.	Solvent ^a	Volume ratio	Temperature $(^{\circ}C)$	Time (h)	Conversion $(\%)$	Yield (%)
	a/b	3:1	85	12	n	
	a/b/d	3:1:1	85	24	100	90
	a/b/d	3:1:1	85	11	83	60
	a/d	1:3	85	24		
	a/d	3:1	80	11	50	50
n	c/d	3:1	80	16	100	50
	c/d	3:1	10	13	o	
Λ	b/d	2:1	80	10	80	80
	e/d	2:1	80		100	90
10 ^b	e/d	3:1	30	12	75	75
11	e		80			
12 ^c	đ		25	0.5	o	
13	e/d	2:1	50	12	100	86

TABLE 1. The effect of solvent and temperature on the reaction of sodium disuhite with **la** (conversion and yield of suhinate determined by 19 F NMR spectroscopy)

^aa, acetonitrile; b, methanol; c, ethanol; d, water; e, DMF.

 ${}^{\text{b}}R_{\text{F}}I$ was Cl(CF₂)₂I.

'With ultrasonic radiation.

meters with KBr pellets. 19F NMR spectra were recorded on a Varian EM-360L spectrometer at 60 MHz. Chemical shifts were positive upfield using TFA as external standard. The values reported are $\delta_F = \delta_{TFA} + 76.8$ ppm. All materials were of commercial grade and were used without further purification.

Typical procedure

A mixture consisting of **lb (2.3 g, 5.0** mmol), sodium disulfite (1.90 g, 10 mmol), DMF (10 ml) and water (5 ml) was stirred vigorously at 80 "C for 2 h. The solvent was removed under reduced pressure and the dry solid left in the flask was extracted with hot ethyl acetate $(3 \times 20 \text{ ml})$. The ester solution was evaporated to dryness and the solid remaining recrystallized from isopropanol to yield 2b (1.71 g, 81%). IR ν_{max} cm⁻¹: 1020 (SO₂Na). ¹⁹F NMR (EtOAc) δ : 67.2 (2F, s, CF₂Cl); 119.0 (2F, m, CF_2CF_2Cl); 130.0 (2F, s, CF_2SO_2Na); 121.0 (6F, m, other fluorine atoms) ppm.

Compounds la and **lc-le** were converted to **2a (85%), 2c (79%), 2d (80%)** and 2e (77%), respectively [4], in a similar manner.

Compound 2a: IR v_{max} (cm⁻¹): 1020 (SO₂Na). ¹⁹F NMR (EtOAc) S: 68.8 (2F, s, CF,Cl); 120.1 (2F, m, CF_2CF_2Cl); 122.3 (2F, m, $CF_2CF_2SO_2Na$); 131.0 (2F, s, CF_2SO_2Na) ppm.

Compound 2e: Colorless needles. IR v_{max} (cm⁻¹): 1020 (SO₂Na). ¹⁹F NMR (EtOAc) δ : 81.5 (3F, s, CF₃); 127.0 (2F, m, CF₂CF₃); 131.0 (2F, s, CF₂SO₂Na); 122.7 (lOF, m, other fluorine atoms) ppm.

The other products were characterized by comparison of their IR and 19F NMR spectra with those of the corresponding authentic compounds [4].

Reaction of polyfluoroalkyl bromides with sodium disulfite

In a typical process, a mixture of 3e (2.49 g, 5 mmol), sodium disulfite (1.90 g, 10 mmol), DMF (10 ml) and water (5 ml) was stirred at 80 $^{\circ}$ C for 6 h. Treatment as above gave 2e (1.97 g, 78%). Compound **3b was** converted to **2b (79%)** in a similar manner [4].

Reaction of 4a with sodium disulfite

A mixture of **4a (3.70 g, 20** mmol), sodium disulfite (7.60 g, 40 mmol), DMF (20 ml) and water (10 ml) was stirred at 60 °C for 9 h. Treatment as above gave **5a** (0.88 g, 19%), colorless crystals. IR v_{max} (cm⁻¹): 1020 (SO₂Na). ¹⁹F NMR (EtOAc) δ : 71.8 ppm. These IR and ¹⁹F NMR spectra are in agreement with those of an authentic specimen [8].

References

- W.-Y. Huang, B.-N. Huang and C.-M. Hu, J. *Fluorine Chem., 23 (1983) 193.*
- W.-Y. Huang, B.-N. Huang and W. Wang, *Acta Chim. Sinica, 43 (1985) 252.*
- W.-Y. Huang and J.-L. Zhuang, *Chin. Chem. Lett., I* (1990) 191.
- B.-N. Huang and J.-T. Liu, *Chin. J. Chem., 8 (1990) 355.*
- 5 N. Hiroshi, *Jpn. Kokai Tokkyo, Koho, 78 106 721* (1978); [Chem. *Abs., 90 (1978) 39587e].*
- P. Emilio and N. Carlo, Ger. Offen. 2 460 246 (1975); *[Chem. Abs., 83 (1975) 163 638~1.*
- B. Dung, J. Houben and A. Oftring, Ger. Offen. *DE 3 830 696 (1990); [Chem. Abs., I12 (1990) P2372021.*
- W.-Y. Huang, B.-N. Huang and J.-L. Chen, *Acta Chim. Sinica, 44* (1986) *45.*